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This presentation was inspired in part by the Laws of Form by G. Spencer-Brown.

1.   Arrangements Of Numbers

Numbers can be arranged in any way.

Example 1

6,7,8,256

Example 2:

1, 3, 5,

4, 5

6

Example 3:

356, 1000,

3, 456,

123 , 666

2.   The Ordered Pair

An ordered pair is an arrangement of two numbers in which one precedes the other, hence the term 
“ordered”. For example,

1,0

0,1

223,356

An ordered pair is also an ordered twosome.

3.   The Ordered Nsome

An ordered Nsome is an arrangement of N numbers in which each number precedes another save the last 
number, hence the term “ordered”. For example,

Example 1: An ordered foursome:

2,4,5,6

Example 2: An ordered sixsome

345,2,2.55,0.004,55,123



4.   The One Dimensional Matrix

An ordered Nsome is a matrix, when an index added. The index can be anything, but is usually limited to 
numbers, especially natural numbers, i.e. 0, 1, 2, 3, …

Ordered pair 1, 0 as a matrix

indexvalue

0 1

1 0

Ordered pair 0, 1 as a matrix

indexvalue

0 0

1 1

An ordered foursome as a matrix.

index value

0 2

1 365

2 3.1415...

3 6.6

In this presentation we will concern ourselves exclusively to one dimensional objects.

5.   The Inner Product Of Ordered Pairs (Twosomes)

The inner product of two ordered Nsome results in a third ordered Nsome.

1.      The product of the first number of both ordered Nsomes is the first number of the third ordered Nsome.

2.      The product of the second number of both odered Nsomes is the second number of the third ordered 
Nsome.

3.      The product of the nth number of both odered Nsomes is the nth number of the third ordered Nsome.

Example 1

ordered twosome 1

3, 4



ordered twosome 2

2, 6

ordered twosome 3

3x2 = 6

4x6 = 24

6, 24

 

Example 2

ordered twosome 1

1, 0

ordered twosome 2

0, 1

ordered twosome 3

1x0 = 0

0x1 = 0

0,0

We denote the inner product with the operator ⟨ ⟩ . In the example above
⟨(3,4) ,(2,6)⟩=(6,24)

Note: In example 2, when the result of the inner product = 0,0, the first and second ordered twosomes are 
orthogonal if the inner product of the ordered twosomes with themselves is not 0,0.

The inner product of the ordered twosome 1,0 with itself is

⟨(1,0) ,(1,0)⟩=(1,0)

and the inner product of the ordered twosome 0,1 with itself is

⟨(0,1) ,(0,1)⟩=(0,1)

Since these inner products are not equal to 0,0, 1,0 and 0,1 are orthogonal ordered twosomes.

6.   The Inner Product Of Matrices

The inner product of two ordered Nsomes can easily be applied to one dimensional matrices which are 
Nsomes with indices:



1.      The product of the first number of both one dimensional matrices is the first number of the third one 
dimensional matrix.

2.      The product of the second number of both one dimensional matrices is the second number of the third 
one dimensional matrix.

3.      The product of the nth number of both one dimensional matrices is the nth number of the third one 
dimensional matrix.

Example 1

one dimensional matrix 1

index value 

0 3

1 4

one dimensional matrix 2

indexvalue

0 2

1 6

one dimensional matrix 3 is the inner product of matrix 1 and matrix 2

index value

0 3 x 2 = 6

1 4 x 6 = 24

 

Example 2

one dimensional matrix 1

indexvalue

0 1

1 0

one dimensional matrix 2

indexvalue



0 0

1 1

one dimensional matrix 3 is the inner product of matrix 1 and matrix 2

index value

0 1x0 = 0

1 0x1 = 0

We denote the inner product with the operator ⟨ ⟩   with ordered Nsomes. In the example above except 
using square brackets for matrices:

⟨[3,4] ,[2,6] ⟩=[6,24]

Note: In example 2, when the result of the inner product = 0,0, the first and second one dimensional matrices 
are orthogonal if the inner product of the one dimensional matrices with themselves is not 0,0.

The inner product of the one dimensional matrix 1,0 with itself is

⟨[1,0] ,[1,0]⟩=[1,0]

and the inner product of the one dimensional matrix 0,1 with itself is

⟨[0,1] ,[0,1]⟩=[0,1]

Since these inner products are not equal to 0,0, 1,0 and 0,1 are orthogonal one dimensional matrices.

These ideas can be extended to matrices of one dimension and high cardinality, i.e. the number of elements in
the matrix:

⟨[1,0,0] ,[1,0,0]⟩=[1,0,0]

⟨[1,0,0,0] ,[1,0,0,0]⟩=[1,0,0,0]

etc.

7.   Linear Combinations Of Basis Matrices

A linear combinations of basis matrices is called synthesis.

A set of orthogonal matrices form a basis. A linear combination of basis matrices can generate other matrices 
of the same cardinality. A linear combination of basis matrices is defined as

cx=a0⋅b0+a1⋅b1+ ...aN −1⋅bN−1

where



cx = the resulting matrix

aχ = coefficient matrix χ (chi)

bχ = the 2 dimensional basis matrix, i.e. a collection of matrices χ = b(χ,x)

N = the cardinality of the matrix

χ  = the χth basis matrix or coefficient

x = the xth element of the resulting matrix

Any one dimensional matrix of cardinality N can be created by a linear combination of basis vectors of 
cardinality N. A different way of stating this is that the basis spans (a term from matrix theory) the matrix 
space.

For example, matrix b is

0 1

1 0

 χ=0, => [x00, x01]

b0 = [1,0]

χ=1, => [x10, x11]

b1 = [0,1]

a0 = 3.2

a1 = 6

cx=a0⋅b0+a1⋅b1=3.2⋅[1,0]+6⋅[0,1]=[3.2,6 ]

Note that the resulting index is x

Note: The two indices for the b basis matrix makes it completely rigorous and to assist in understanding the 
extension from matrices to continuous functions in ℝ, the real numbers,:

8.   Reversing Linear Combinations Of Basis Matrices

Generating the a coefficient matrix from a the synthesized matrix above is called analysis.  This is done by 
simply taking the inner product of each constituent matrix of the basis matrix b(χ,x) with cx, i.e. determine aχ 

by taking the inner product of the corresponding basis function, bχx with cx:

a χ=⟨cx ,b χx⟩



From the example above:

b0 = [1,0]

cx = [3.2,6]

⟨cx ,b0⟩=⟨[1,0 ] ,[3.2,6]⟩=1⋅3.2+0⋅6=3.2+0=3.2=a0

⟨cx ,b1⟩=⟨[0,1] , [3.2,6 ]⟩=0⋅3.2+1⋅6=0+6=6=a1

We can also describe the coefficiants aχ as the degree to which c resembles bχx or the degree to which bχx is 

present in cx.

So the above should be written

a χ=⟨cx ,b χx⟩  

Note also that the aχ are scaler values, indexed by χ.

9.   From Matrices To Functions

A function is a mapping from a domain to a range. Only one value in the range can be assigned a value in the 
domain. For example, the table shows the domain by the values of x and the range by the values of F(x). 
Each value of x is assigned a value F(x).

x F(x)

0 2

1 365

2 3.1415

3 6.6

 

Table 1 Function Example 1

 This is identical to the index and values of the matrix shown in section 4. If we equate the domain of the 
function with the index of the matrix, we can use the matrix properties of orthogonal basis and linear 
combinations to analyze functions using basis functions, the functional analog of basis matrices.  The 
following figure shows how to illustrate a linear combination of the basis matrices [1,0] and [0,1] to create 
the function, illustrated in the 

Cartresian coordinate plane (CCP), shown in Table 4.  Note: There are two basis functions shown in Table 2 
and Table 3, each of which is mapped on the x-coordinates 0 

and 1 in the CCP.



 

 

x F(x)

0 1

1 0

 

 

Table 2 Basis Function [01]

 

 

 

x F(x)

0 0

1 1

 

Table 3 Basis Function ↔ [01]

 

 

x F(x)

0 3.2

1 6

 

Table 4 Resulting Function ↔ 3.2 * [1,0] + 6 * [0,1]



Figure 1 Function Example Using CCP

 

 

Figure 2 1 Dimensional Basis Matrices Of Cardinality 5

 

As shown in Figure 2, this idea can be extended to more basis functions (matrices), even an infinite number, 
extending to all x = 0, 1, 2, 3, ....  All the the basis functions (matrices) still have the following properties:



1. The inner product of 2 different basis functions (matrices) is 0 

2. The inner product of  the basis function (matrix) with itself is 1 

3. Any function whose domain is the natural numbers, , ℕ can be expressed as a linear combination of 
the basis functions (matrices). 

4. We can determine aχ by taking the inner product of the corresponding basis function, bχ with cx, the 

function.

10.         Basis Functions With Negative Or Real Indices

Just as we can extend the basis functions (matrices) domain (indices) to all the natural numbers, when can 
extend it to the integers as well:

Figure 3 1 Dimensional Basis Matrices Of Countably Infinite Cardinality

 

As shown in Figure 3, all the the basis functions (matrices) still have the following properties:

1. The inner product of 2 different basis functions (matrices) is 0 

2. The inner product of  the basis function (matrix) with itself is 1 

3. Any function whose domain is the integers, ℤ, can be expressed as a linear combination of the basis 
functions (matrices).

4. We can determine aχ by taking the inner product of the corresponding basis function, bχ with cx, the 

function. 

 



Just as we can extend the basis functions (matrices) domain (indices) to all the integers, when can extend it to
the real numbers as well:

 

Figure 4 1 Dimensional Basis Matrices Of Uncountably Infinite Cardinality

 

As shown in Figure 4, all the the basis functions (matrices) still have the following properties:

1. The inner product of 2 different basis functions (matrices) is 0 

2. The inner product of  the basis function (matrix) with itself is 1 

3. Any function whose domain is the real, ℝ, can be expressed as a linear combination of the basis 
functions (matrices).

4. We can determine aχ by taking the inner product of the corresponding basis function, bχ with cx, the 

function.

11.         Problems Of Functions Whose Domain is ℝ

Obviously, the examples presented in the preceding sections become difficult when basis matix cardinality is 
very large, even infinite as in the case with basis functions whose domain is ℝ.  However, integral calculus 
provides a means by which these functions can be manipulated quite easily.  In fact, extending the ideas of 
orthogonality, the inner product and linear combinations of bases from simple ordered pairs to continuous 
functions in ℝ is one of the greatest advancements in mathematics that has occurred in the past 150 years.

 

12.         Creating The Inner Product Of Two Functions In ℝ



The following equations and graph illustrate the very simple idea of the integral in calculus.  Simple ideas, 
however, can have complex mathematical principles attached.  

 

 

All the fancy math notation “simply” means the integral is a sum of rectangles that approximate the area 
under a funtion, the curve shown in figure , in this case the product of two functions F1(x) and F2(x), when 

Δ<0 and the number of elements in the sum = (M-L)/Δ.  The relationship between the number of “samples”, 
N, i.e. rectangles and the distance between M and L is

N=
M−L

Δ
                                                                                                                           

Also, 

(M−L)Δ=1⇒N=
1

Δ2

As Δ→0, the number of samples increases exponentially until they reach an infinitely accurate 
approximation of the area under the curve = F1(x) ∙F2(x).

The integral of the product of  two functions also has another property: As Δ→0, it also reaches an infinitely 
accurate approximation of the inner product of the value of both functions for each real number!  Note the ...
+ F1(xn) F2(xn) + F1(xn+1) F2(xn+1) +... terms above are exactly the same as the terms in the simple cases of 

matrix inner product presented in section 6 and converge to the inner product of each function for each real 
number.

 Real Basis Functions

The basis function shown in Figure 4 is interesting as an illustration, but has no real practical purpose.  There
is very little information contained in a function which is 1 for 1 real number and 0 for all the rest.  Are there 
any functions which met our set of requirements:

1. The inner product of 2 different basis functions (matrices) is 0 

2. The inner product of  the basis function (matrix) with itself is 1 



3. Any function whose domain is the real, , can be expressed as a linear combination of the basis 
functions (matrices). 

4. We can determine aχ by taking the inner product of the corresponding basis function, bχx with cx, the 

function.

Translating this to the language of calculus we obtain

1.∫
−∞

∞

Fa( χ ,x )Fb( χ , x)dx=0  

 2.∫
−∞

∞

Fa( χ ,x )Fa( χ , x)dx=1

3. f ( χ )=∫
−∞

∞

Fb( χ , x )F (x )dx

4. F (x)=∫
−∞

∞

Fb ( χ , x ) f ( χ )dχ

The answer is yes:

f̂ (ξ)=∫
−∞

∞

F (x)e−2 πxξ dx  

Where Fb(χ,x)↔e-2πjxξ

χ↔ξ

13.         Sinusoidal Basis Functions In ℝ

The rather formidable formulas and the end of the last section are actually structured simply.  The complex 
expoential is, of course, Eulers astonishing discovery of the relationship with the transcendental constant e = 
ln-1(1) =

2.71828182845904523536028747135266249775724709369995...

and the sine and cosine functions.

The famous formula is

e jx
=cos (x)+ jsin(x)

j=√−1

By scaling the argument with x or t, which are real variables, to create a function we have

e jωx
=cos(ωx)+ jsin(ωx)

Where ω, i.e. frequency,  corresponds to χ above



Summary

Analysis

a χ=⟨cx , b( χ , x)⟩
⋯

a−1=⟨c x , b(−1, x)⟩=…c−1⋅b−1,−1+c0⋅b−1,0+c1⋅b−1,1+...
a0=⟨cx , b(0, x)⟩=…c−1⋅b0,−1+c0⋅b0,0+c1⋅b0,1+...
a1=⟨cx , b(1, x)⟩=…c−1⋅b1,−1+c0⋅b1,0+c1⋅b1,1+ ...

...

aχ=∑
x=∞

∞

cx⋅bχx ⇒

f ( χ )=∑
x=∞

∞

c x⋅bχx Δx⇒

f ( χ )=lim
Δx→0

∑
x=∞

∞

c x⋅bχx Δx

＝∫
∞

∞

f c(x )⋅f bχ (x)dx

＝∫
∞

∞

f c (x)⋅f b( χ , x )dx

The variable χ in the last equation creates a unique basis function, i.e. a set of unique basis functions. 

Synthesis

c x=⟨aχ , b( χ , x)⟩
⋯

c−1=⟨ax , b(−1, x)⟩=…a−1⋅b−1,−1+a0⋅b−1,0+a1⋅b−1,1+...
c0=⟨ax , b(0, x)⟩=…a−1⋅b0,−1+a0⋅b0,0+a1⋅b0,1+ ...
c1=⟨ax , b(1, x)⟩=…a−1⋅b1,−1+a0⋅b1,0+a1⋅b1,1+...

...

cx=∑
x=∞

∞

aχ⋅bχx ⇒

f (x)=∑
x=∞

∞

aχ⋅b χx Δχ ⇒

f (x )=lim
Δχ→0

∑
x=∞

∞

aχ⋅b χx Δχ

＝∫
∞

∞

f a( χ)⋅f bχ (x )dχ

＝∫
∞

∞

f a( χ )⋅f b( χ , x)dχ

The variable χ in the last equation creates a unique basis function, i.e. a set of unique basis functions. 


