What is the limit of this function as $x \rightarrow 3$?

I.e.
$$f(x) = 4$$
.

Recall the definition of "limit"

 $f: D \rightarrow \mathbb{R}$ be a function defined on a subset $D \subseteq \mathbb{R}$

c be a limit point of *D*

L be a real number. Then the statement

 $\forall \epsilon < 0$, $\exists \delta > 0$:

$$\forall x(0 < |x - c| < \delta \Rightarrow |f(x) - L| < \epsilon)$$

is abbreviated to

$$\lim_{x\to c} f(x) = L$$

Less formally, "For all ϵ <0 there exists some δ >0 such that

a.
$$0 < |x-c| < \delta$$

b. $|f(x)-L|<\epsilon$ for all x in D that satisfy a.

This is why "limit" is referred to as a "limiting process" since it is not a function, i.e. a mapping from a domain to a range. Being a process, we can perform the steps in the process to answer the question above.

First, we make a list of the relevant terms involved:

Χ	С	<i>f</i> (<i>x</i>)	L	x-c	δ	f(x)-L	ε	a.	b.	comment
4	3	4	4	1.00	2.00	0	5.00			
3.5	3	4	4	0.5	0.51	0	5.00			¹eureka!

¹By definition $\varepsilon > 0$, so, since |f(x)-4|=0 for all x, |f(x)-4| is less than ε for all x. And we can pick any $\delta > |x-c|$ no mater how close, or how far away x is from c=3. So

$$\lim_{x\to 3}f(x)=4$$

QED

Suppose we chose L=5 instead of 4, what would result?

X	С	<i>f</i> (<i>x</i>)	L	x-c	δ	f(x)-L	ε	a.	b.	comment
4	3	4	5	1.00	2.00	-1 = 1	5.00			
3.5	3	4	5	0.5	0.51	-1 =1	0.05		!	2 no, 1 \neq 0.05

²By definition $\varepsilon > 0$, so, since |f(x)-5|=1 for all x, |f(x)-5| is not less than any ε for all x. We can pick any $\delta > |x-c|$ no mater how close, or how far away x is from c=3. So the limit does not exist:

$$\exists \lim_{x \to 3} f(x)$$

What is the limit of this function as $x \rightarrow 3$?

I.e. f(x) = 4 if x = 3, 0 otherwise.

X	С	<i>f(x)</i>	L	x-c	δ	f(x)-L	ε	a.	b.	comment
4	3	0	4	1.00	2.00	4	5.00		√	
3.5	3	0	4	0.5	0.51	4	5.00		√	
3.5	3	0	4	0.5	0.51	4	3.00		!	4 > 3
3.5	3	0	0	0.5	0.51	0	3.00		√	
3.01	3	0	0	0.01	0.02	0	3.00		√	eureka!*

*By definition $\varepsilon > 0$, so, since |f(x)-0|=0 for all x, |f(x)-0| is less than any ε for all x. And we can pick any $\delta > |x-c|$ no mater how close, or how far away x is from c=3. So

$$\lim_{x\to 3} f(x) = 0$$

QED

What is the limit of this function as $x \rightarrow 3$?

I.e. f(x) = 4 if x > 3, 0 otherwise.

X	С	<i>f</i> (<i>x</i>)	L	x-c	δ	f(x)-L	ε	a.	b.	comment
4	3	4	4	1.00	2.00	0	5.00		√	ε always >0
1	3	0	4	2	3	4	5.00		√	
1	3	0	4	2	3	4	0.1		!	3 no, 4 \neq 0.1

 3 By definition ε>0, so, since |f(x)-4|=4 for all x≤3, |f(x)-4| is not less than any ε for all x. We can pick any δ>|x-c| no mater how close, or how far away x is from c=3. So the limit does not exist:

$$\exists \lim_{x \to 3} f(x)$$

QED

What is the limit of this function as $x \rightarrow 3$?

I.e.
$$f(x) = 0$$
 if $x < 2$
3 if $2 \le x < 3$
4 otherwise.

									comment
2.5	3	3	4	0.5	2.00	-1 =1	1.00	 !	⁴no, 1 ≮ 1

⁴By definition $\varepsilon > 0$, so, since |f(x)-4|=1 for all $2 \le x < 3$, |f(x)-4| is not less than any ε for all x. We can pick any $\delta > |x-c|$ no mater how close, or how far away x is from c = 3. So the limit does not exist:

$$\lim_{x \to 3} f(x)$$
QED