What is the derivative of this function at x=3?

I.e. $f_0(x) = 4$ if x = 3, 0 otherwise.

Recall the definition of "limit":

For all $\epsilon > 0$ there exists some $\delta > 0$ such that the following hold a. $0 < |x-c| < \delta \Rightarrow -(x-c) < \delta < x-c$ b. $|f(x)-L| < \epsilon$ for all x that satisfy a.

$$\lim_{x\to c}f(x)=L$$

Definition of the derivative of a function

$$\frac{df(x)}{dy} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$\Delta x = |x - c|$$

So, for this case

$$f(x) = \frac{f_0(x + \Delta x) - f_0(x)}{\Delta x}$$

Since $c = x + \Delta x$ and $\Delta x = c - x$

$$f(x) = \frac{f_0(c) - f_0(x)}{c - x}$$

SO,

$$\frac{df(c)}{dx} = \lim_{x \to c} \frac{f_0(c) - f_0(x)}{c - x}$$

A table of the relevant terms involved and their values:

Х	С	f(x)	f ₀ (c)	$f_0(x)$	C-X	δ	comment
1	3	4	4	0	2	2.1	3-δ <x<c< td=""></x<c<>
2.5	3	8	4	0	0.5	2.1	"
2.999	3	4000	4	0	0.001	2.1	"
2.9	3	<∞	4	0	0.0	1.1	"
3	3	∞	4	0	0	2.1	<i>x</i> = <i>c</i>
4	3	-4	4	0	-1	2.1	c <x<3+δ< td=""></x<3+δ<>
3.1	3	-40	4	0	-0.1	2.1	"
3.0001	3	-40000	4	0	-0.0001	2.1	"
3.01	3	>-∞	4	0	-0.01	2.1	"

x approaches c from below

• As $x\rightarrow c$, $3-\delta < x < c$, c-x>0

$$\circ$$
 (c-x) \rightarrow 0 \Rightarrow $f(x)\rightarrow+\infty$

x approaches c from above

• As $x\rightarrow c$, $c< x<3+\delta$, c-x<0

$$\circ (c-x) \rightarrow 0 \Rightarrow f(x) \rightarrow -\infty$$

So for every $\varepsilon > 0$ there is no δ such that $|f(x) - L| > \varepsilon$ for any and all x in D and any L, because if x < c, f(x) > 0 (positive) and if x < c, f(x) < 0 (negative). Therefore

$$\lim_{x\to 3} f(x)$$

Does not exist.

Note:

 $f: D \rightarrow \mathbb{R}$ is a function defined on a subset $D \subseteq \mathbb{R}$

$$D = \{x | 0 < |x-c| < \delta\} \Rightarrow \{x | c - \delta < x < c + \delta\}$$

Now, when x approaches c from below, the limit

$$\lim_{x \to 3, x < 3} f(x) = +\infty$$

does exist. This is called the left derivative.

When x approaches c from above, the limit

$$\lim_{x\to 3,\,x>3}f(x)=-\infty$$

also exists. This is called the right derivative.