A detailed derivation of a linear, discrete-time, Wiener Filter

Sequence u(0), u(1), u(2),... is the input to a filter whose filter coefficients, wi, wo, Wz, ... = Wn,
is the impulse response of the filter. Both the input sequence terms and the impulse response
terms are complex.

Note: u(n) is NOT the unit step function!

y(n) = z wrun—k),n=0,1,2,..
k=0

* = complex conjugation
wru(n — k) represents an inner product of the filter coefficients wy and the filter input u(n-k).
d(n) = the desired sequence

We wish to generate y(n), an estimate of the desired sequence, that is related to the desired
sequence with the following expression:

e(n) = d(n) —y(n)

The filter design is optimized if the mean-square error (MSE) value of the estimation error, e(n)
is minimized.

We define
J = Ele(m)e*(n)]
=E[[lem||’]
Since the coefficients are complex, they have a real and imaginary part:
Wk = ak+jbk, k=0,1,2, ...

We take the derivative of the filter expression and set this equal to 0, then solve for the values of
the coefficients. This is modified version of the technique used to find the minimum of a
continuous function.

We use the gradient operator V, the kth element of which is written in terms of the first-order
partial derivatives with respect to the real part ax and the imaginary part by, for the kth filter
coefficient:

)
- i k=012 ..
Vi aak+]abk'k 0,12,
ORe almj
vy = 2Rell | Ol 6o

aak abk

For the cost function, J, to reach its minimum value, all the elements of the gradient vector V(J)
must be simultaneously equal to zero, as shown by

Ve=0k=0,12, ..
Vi) = Vi ([e(m)e*(m)])
The expected value of two random processes, r and s:
E[r(n)s(n)]
E[r(n)] =r(0)Prg + r(1)Ppy + -+
E[s(n)] = s(0)Psg + s(1)Ps; + -
E[r(n)s(n)] = r(0)Pqs(0)Psy + r(1)s(1)Ps; + -

Note: This is not the product of two polynomials, but the statistical inner product (SIP) of two
sequences.

The partial derivative of the MSE equals the MSE of the partial derivative of the SIP of r(n) and
s(n)
IE[r(n)s(m)] _ 9[r(0)Pros(0)Pso + 7(1)Pr15(1)Psy + -]

dq dq
_ 0(r(0)Prs(0)Psp) + 0(r(1)Prys(1)Psy) + --)
= 3
d(r(n)Byps(n)Py)
E
dq

For E[e(n)e*(n)] =]

Ele(n)e* ()] = E[(d(n) — y(m)(d(n) — y*(n))]
= (d(0) = y(0))Pa—y)0(d(0) = y*(0))P(a-y)0
+(d(1) = y(1))Pa—y)1(d(1) = y* (1)) P(g-y
+(d(2) = y(2))P(a-)2(d(2) = y*(2))P(a-y)2

|]

= (d(O) — y(O))(d(O) - y*(o))P(d—y)OP(d—y)O

+(d(1) —y(D)(d@) = y*(D)Pa-y)1Pa-yn

+(d(2) = y(2)(d(2) = ¥*(2))Pa-y)2Pa-yy2 +]

9((d(0) — y(0))(d(0) = y*(0))Pa—y)o” L 9O ~ (0))(d(0) = y*(0))Pa—y)0o’

dag dbg
o((d(1) — y()(d(1) = y*(1))Pa—y)° N d((d(1) — y(1)(d(1) = y*(1))P(g—y)°
dag dbg

The partial derivative of the two sequences uses the familiar formula of the derivative of the
product of two functions from calculus:

da(m)b(n) _ da(n) db(n)
9q =g * db(n) + 3q * da(n)
So, since
y(n) = Z wrun—k),n=20,1,2,..
k=0
Wk = ak+jbk, k=0,1,2, ...
A((d(m) — y(m)(d(n) = y* ()P a—yym”
dag
a(d(n) — a(dn) —y*
= P(a—y)n2< ((n; y(n))>(d(n) S A) +< ((n)aa Y (n))> (d() —y(m))
d(d(n) —y(n))
aak
_8dm) ay(n)
N aak B ﬁak
Since d(n) does not depend on ax. or b, a:i:) =0
a0y
=0- o, =u(n-—k)

0—u(n—k))en) +0—un—k)en)

and

9(d(n) — i0(d(n) —y*
Pty (1 ((na)bn y(n))) (dn) - y*(n))+<1 ((n;bny (n))> (dn) = y(n)

(0 —j * ju(n —k))e()*) + (0 — j * ju(n — k))e(n)
u(n —k)en)* + u(n — k)e(n)
Summing the two results
u(n—k))en)* —un—k)e(n) + un —k)e(n)* + u(n — k)e(n)
= 2u(n —k))e(n)”
=>V.(J)) =]E[Zu(n — k))e(n)*]

“Let eg denote the special value of the estimation error that results when the filter operates in its
optimum condition, so the filter is operating in its optimal state when the following is true, or as
close to being true as is possible

IE[u(n — k))eo(n)*] =0

In other words E[u(n — k))e,(n)*] is as close to 0 as possible.

u(n-1) u(n-2) u(n-3) — u(n-4) u(n-M+2) u(n-M+1)
u(n)— Z-l Z’l Zr1 VA ‘) .

W*o w™q w™ W*3
Af (N}
+ +

